DoorDars-SMC: Transforming Education

Coding and Robotics

Empowering Young Minds Through Coding and Robotics

At Doordars-SMC, we believe in unlocking the potential of young innovators through engaging, hands-on Coding and Robotics activities. Tailored for children aged 10-16, our programs introduce primary and secondary school students to the exciting world of STEM/STEAM education. With a focus on creativity, problem-solving, and real-world applications, we aim to inspire the next generation of engineers, programmers, and thinkers.

Why Coding and Robotics?

  • Enhance Problem-Solving Skills: Students learn to break down complex problems and develop solutions using logical reasoning.

  • Build Creativity: Coding and robotics provide a platform for young minds to innovate and create.

  • Real-World Applications: Hands-on activities connect theoretical concepts to practical scenarios, preparing students for future technological challenges.

  • 21st-Century Skills: Empower children with skills like programming, engineering, and teamwork that are vital in the modern world.

What We Offer

  • Robotics Projects: Build and program robots to perform tasks, from navigating mazes to completing challenges.

  • Coding for All Levels: Start with block-based programming like Scratch and progress to Python and Arduino IDE.

  • Sensor Integration: Learn to use sensors like ultrasonic, infrared, and temperature sensors in innovative projects.

  • AI and Machine Learning Basics: An introduction to artificial intelligence concepts through real-world projects.

  • Team Competitions: Participate in coding and robotics challenges to foster teamwork and a competitive spirit.

Sample Activities

  • Beginner Coding: Create interactive stories and games using Scratch.

  • Robot Building: Assemble a robot and program it to follow a line or avoid obstacles.

  • IoT Projects: Connect devices like Raspberry Pi and Arduino to sensors for smart home projects.

  • AI Projects: Train basic models to predict weather or recognize objects using camera modules.

How It Works

  1. Workshops and Camps: Intensive sessions at schools or community centers.

  2. After-School Programs: Weekly classes to steadily build skills.

  3. DIY Kits: Take-home kits with instructions to experiment and learn independently.

STEM/STEAM Education for All

We are committed to making STEM/STEAM education accessible and inclusive for every student. By combining Science, Technology, Engineering, Arts, and Mathematics, we help students discover how diverse disciplines work together to solve complex problems.

Join Us!

Discover the endless possibilities of coding and robotics with Doordars-SMC! Whether you’re a beginner or an enthusiast, we have a program for you. Let’s build the future together!

  • Learn More: Contact us to inquire about our programs.

  • Download: Our Monthly Newsletter

Fruit Classification

Images in Data Set
Images in Data Set

#----------------------------

#connecting drive with colab

#----------------------------

from google.colab import drive

drive.mount('/content/drive')

# Follow the instructions for uploading drive and setting permissions.

#

#-------------------------------

import os

import numpy as np

from PIL import Image

from sklearn.model_selection import train_test_split

import tensorflow as tf

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense

# -----------------------------------------

# STEP 1: SET PARAMETERS

# -----------------------------------------

data_dir = "/content/drive/MyDrive/FruitsDataSet" # Path to your main dataset folder

!pwd

img_height = 64

img_width = 64

# Lists to store image data and labels

images = []

labels = []

# Optional: list subfolders (fruit classes) explicitly, or get them automatically

fruit_classes = [

folder for folder in os.listdir(data_dir)

if os.path.isdir(os.path.join(data_dir, folder))

# and not folder.startswith('.') # uncomment if you have hidden/system folders

]

# -----------------------------------------

# STEP 2: LOAD & PREPROCESS IMAGES

# -----------------------------------------

for class_name in fruit_classes:

class_folder = os.path.join(data_dir, class_name)

# Go through each image in the class folder

for img_file in os.listdir(class_folder):

# Only process valid image formats

if img_file.lower().endswith(('.png', '.jpg', '.jpeg')):

img_path = os.path.join(class_folder, img_file)

try:

# 1. Open the image

img = Image.open(img_path)

# 2. Convert to RGB (3 channels) to ensure uniform shape

img = img.convert("RGB")

# 3. Resize to a consistent size (64x64)

img = img.resize((img_width, img_height))

# 4. Convert the image to a NumPy array

img_array = np.array(img) # shape => (64, 64, 3)

# Store the processed image and the corresponding label

images.append(img_array)

labels.append(class_name)

except Exception as e:

print(f"Error loading {img_path}: {e}")

# Convert the lists to NumPy arrays

images = np.array(images, dtype="float32") # shape => (num_images, 64, 64, 3)

labels = np.array(labels)

print("Loaded images shape:", images.shape) # e.g. (NUM_SAMPLES, 64, 64, 3)

print("Loaded labels shape:", labels.shape)

# -----------------------------------------

# STEP 3: NORMALIZE PIXEL VALUES [0,255] -> [0,1]

# -----------------------------------------

images = images / 255.0

# -----------------------------------------

# STEP 4: ENCODE LABELS (STRING TO INT)

# -----------------------------------------

unique_labels = np.unique(labels)

label_to_idx = {label: idx for idx, label in enumerate(unique_labels)}

encoded_labels = np.array([label_to_idx[lbl] for lbl in labels])

# -----------------------------------------

# STEP 5: SPLIT INTO TRAIN & TEST

# -----------------------------------------

X_train, X_test, y_train, y_test = train_test_split(

images,

encoded_labels,

test_size=0.2,

random_state=42

)

print("X_train shape:", X_train.shape)

print("y_train shape:", y_train.shape)

print("X_test shape:", X_test.shape)

print("y_test shape:", y_test.shape)

# -----------------------------------------

# STEP 6: BUILD A SIMPLE CNN MODEL

# -----------------------------------------

num_classes = len(unique_labels)

model = Sequential([

Conv2D(32, (3, 3), activation='relu', input_shape=(img_height, img_width, 3)),

MaxPooling2D((2, 2)),

Conv2D(64, (3, 3), activation='relu'),

MaxPooling2D((2, 2)),

Flatten(),

Dense(128, activation='relu'),

Dense(num_classes, activation='softmax') # one output node per class

])

model.compile(

optimizer='adam',

loss='sparse_categorical_crossentropy',

metrics=['accuracy']

)

model.summary()

# -----------------------------------------

# STEP 7: TRAIN THE MODEL

# -----------------------------------------

history = model.fit(

X_train, y_train,

epochs=10,

validation_split=0.2,

batch_size=32

)

# -----------------------------------------

# STEP 8: EVALUATE THE MODEL

# -----------------------------------------

test_loss, test_acc = model.evaluate(X_test, y_test)

print(f"Test Accuracy: {test_acc*100:.2f}%")

# -----------------------------------------

# STEP 9: Plot

# -----------------------------------------

import matplotlib.pyplot as plt

# (Optional) Plot training results or test predictions

# Plot training & validation accuracy

plt.figure(figsize=(8, 5))

plt.plot(history.history['accuracy'], label='Train Accuracy')

plt.plot(history.history['val_accuracy'], label='Validation Accuracy')

plt.title('Training and Validation Accuracy')

plt.xlabel('Epochs')

plt.ylabel('Accuracy')

plt.legend()

plt.show()

#------------------------

#STEP 10 Random Check

#------------------------

# Pick a random test image

rand_index = random.randint(0, len(X_test)-1)

sample_image = X_test[rand_index]

actual_label_index = y_test[rand_index]

actual_label = unique_labels[actual_label_index]

# Predict

predictions = model.predict(np.expand_dims(sample_image, axis=0))

predicted_label_index = np.argmax(predictions)

predicted_label = unique_labels[predicted_label_index]

plt.imshow(sample_image)

plt.title(f"Actual: {actual_label}, Predicted: {predicted_label}")

plt.show()

Python Codes for Data Processing